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INTRODUCTION:

The purpose of this study was to investigate the hypothesis that reduced

joint/muscle activity (hypo kinesia) as well as reduced or null loading of limbs (ady-

namia) in gravity would result in reduced decompression-induced gas phase and

symptoms of decompression sickness (DCS). Finding a correlation between the two

phenomena would correspond to the proposed reduction in tissue gas phase formation

in astronauts undergoing decompression during extravehicular acvitity (EVA) in micro-

gravity. The observation may further explain the reported low incidence of DCS in

space.

BACKGROUND:

Operationally important medical challenges of manned space flight include mi-

crogravity-induced cardiovascular deconditioning, total body calcium loss, and the risk



of decompression sickness (DCS) during extravehicular activity (EVA). Altitude DCS

deserves particular attention because it is a preventable complication, but one that can

have serious consequences if left unattended (53). Evaluation of the interaction be-

tween microgravity exposure and decompression illness is appropriate in view of plans

for extended duration missions and an overall increase in the number of EVAs required

for construction of the space station. It is intended that such investigation will lead to a

better understanding of the interplay between DCS and the human cardiovascular sys-

tem in a microgravity environment.

Decompression sickness results from the formation and growth of gas bubbles

within the tissues and venous blood, e.g., venous air emboli (VAE). Associated symp-

toms can range from mild skin itching or simple joint pain to central nervous system in-

volvement and even cardiovascular collapse. The pathophysiology of DCS may also

impact the lungs as the venous bubbles obstruct the pulmonary microcirculation (13,18)

decreasing cardiac output (CO), increasing pulmonary vascular pressures and altering

lung fluid balance. The preponderance of actual symptoms, however, involve limb pain

that are presumably caused by extravascular bubbles.

Animal models have offered numerous insights into the mechanisms and etiolo-

gies of the symptoms of DCS. The smaller animal models usually require more extreme

decompression exposures before more typical symptoms are manifested. These

symptoms may also be far more severe than occurs routinely in the human clinical

situation, especially where actual mortality rates are reported. The rat, for example, is a

model commonly used in experimental DCS, but often requires greater extremes in de-

compression protocols (6,40,51). As a result, the more subtle effects of DCS are often

overshadowed by the onset of a severe circulatory or pulmonary complications. Large

animals such as the goat and sheep have been useful in evaluating the effects of de-

compression profiles in terms of limb pain (3,8,38) or respiratory complications (3),

whereas the dog and swine have been used for hemodynamic assessment (7,17,58).



Flynn and Lambertsen (27) reported on a number of animal models of log-log relation-

ship between body weight and the nitrogen dose required to produce DCS.

Of equal importance in drawing conclusions from one species or measurement

to another is the type and accuracy of symptom or measurement being made. The pur-

pose of the present study was to examine the effects of moderate decompression stress

in terms of cardiovascular function and pulmonary responses in chronically, instru-

mented, conscious rats using a profile that was well below a threshold of significant

mortality.

The adaptation of the cardiovascular system to the microgravity environment

(cardiovascular deconditioning) appears to be due in part to a cephalad fluid shift and

has been extensively studied in the conscious rat (45). Astronaut EVAs have brought

into question the potential relationship between cardiovascular deconditioning and hy-

pobaric DCS. Compared with careful ground-based studies conducted in hypobaric

chambers, there is a lower incidence of DCS in space during the astronaut EVAs that

would be predicted (52). These studies have established the predicted incidence of

DCS expected, both in relation to the final altitude following a direct or staged decom-

pression and, subsequent to washout of tissue inert gas (e.g. nitrogen) by oxygen pre-

breathing prior to decompression (26). In addition, other factors such as exercise, am-

bulation, time at altitude and individual susceptibility have been examined (2). The in-

teraction between hypobaric decompression and the deconditioned cardiovascular

system has not been previously evaluated. The purpose of this study was to assess

pulmonary and hemodynamic effects of simulated microgravity and hypobaric decom-

pression illness in the conscious rat.

METHODOLOGY:

Principle. Two series of studies were conducted. The first was to evaluate the

cardiopulmonary changes with moderate decompression in rats. The second was to

study the effects of tail-suspension cardiovascular deconditioning and venous air embo-
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lism in simulated microgravity in the rat. The combined procedures of chronic instru-

mentation, tail-suspension deconditioning and decompression were found to compro-

mise overall evaluation. Therefore, the procedures were separated such that instru-

mentation and decompression were evaluated in one series and instrumention, tail-

suspension and venous air infusion (simulating both microgravity deconditioning and

decompression sickness) in the second series.

Overview: All experiments and procedures were approved by the Institutional

Animal Care and Use Committee at The University of Texas Medical School at Houston.

Sprague-Dawley rats were used to study the cardiac function and pulmonary changes

with decompression. In the first series of studies, the rats were divided into two groups,

one using chronically instrumented, awake rats for cardiovascular function assessment

and the second using non-instrumented rats for pulmonary measurements. The pulmo-

nary group was subdivided into groups 2-4 (2 controls, 3 those monitored 0 min post

decompression, and 4 those monitored 60 min post decompression). In the second se-

ries, six groups of rats were studied. Groups 1 and 2 were used to assess the hemody-

namic effects of tail-suspension with and without venous air infusion, whereas groups 3-

6 were used for biochemical analysis. Each animal served as its own control.

I. Cardiovascular Function

a) Instrumentation: The rats were anesthetized with halothane, intubated and

ventilated under isothermic conditions. A left parasternal thoracotomy was performed

and the pericardium exposed and sectioned. A 20-MHZ pulsed Doppler flow probe was

then placed around the ascending aorta for cardiac output measurement. The dis-

placement probe used to measure left ventricular wall thickening was sutured to the left

ventricular wall and an 18 gauge thoracic drain was positioned until closure of the tho-

rax.



The ultrasonic flow probe leads were tunneled to the dorsum of the neck for ex-

ternalization and the surgical wounds closed. Polyvinyl catheters were placed into the

abdominal aorta via the femoral artery and the jugular vein for measurement of arterial

blood pressure and central venous pressure. The catheters were also tunneled to the

neck dorsum. The lungs were reinflated under vacuum and the wounds were infiltrated

with bupivacaine (0.5%) for post-operative analgesia. Antibiotic therapy (gentamycin 5

mg/kg IM) was initiated for a minimum of 5 days. The animals were weighed daily and

inspected for signs of infection.

The single-crystal pulsed Doppler technique for measurement of changes in

myocardial wall thickening fraction has previously been described in detail (34). The

displacement modules operated at a pulse repetition frequency of 8 KHz and an ultra-

sonic frequency of 20 MHZ. The pulsed Doppler system measured displacement of

myocardial tissue through a sample volume with the use of a single crystal which alter-

nately serves as transmitter and receiver. Briefly, it operates by integrating the velocity

of the various myocardial layers that pass back and forth through a range-gated sample

volume located within the myocardium at a fixed distance from the epicardial surface

where the crystal is attached to the myocardial wall. Thickening fraction is defined as

the maximum excursion recorded during systole, divided by the sample volume depth.

The range was set a 2-3 mm depth near the endocardium.

The pulsed Doppler system for measurement of cardiac output in small animals

has also been described in detail (35). Briefly, a linear relationship between true vol-

ume flow and Doppler frequency shift has previously been demonstrated in a variety of

blood vessels with diameters ranging from 1 to 11 mm. At a pulsed repetition frequency

(PRF) of 125 KHz, the Doppler system resolves frequency shifts of up to 62.5 KHz

(PRF/R) at a maximum range (R) from 0.6 to 6 mm and a spatial range of 0.3 mm. True

blood flow was calculated from the maximum Doppler frequency shift using the standard

relationship described by Ishida et al. (37). The Doppler flow probes were manufac-

tured according to previously described techniques (34,35).



b) Hemodynamic Measurements: All hemodynamic variables [e.g. heart rate

(HR), mean arterial (MAP) and central venous pressure (CVP), left ventricular wall

thickening (WT), and cardiac output (CO)] were processed with the multichannel pulsed

Doppler flow/dimension system and were continuously displayed on a Gould physiog-

raph. The wall thickening fraction (TF%) was calculated as 100 x SE/R (SE, the systolic

excursion and R, the range-gate depth). Systemic vascular resistance (SVR) was cal-

culated as MAP/CO.

c) Pulmonary Edema Measurement. The amount of blood-free extravascular

fluid (edema) formation was measured using a modified method of Pearce (48) to ac-

count for the residual blood volume in the organ. The extravascular lung water (EVLW)

was expressed as the extravascular fluid to dry weight ratio.

d) Lung Compliance: For quasi-static lung compliance measurement, the lungs

were isolated, degassed under vacuum (56), placed in a heated humidified chamber

and connected via a tracheal catheter to an infusion/withdrawal pump and an airway

pressure transducer. The lungs were inflated to 30 cm H20 at a rate of 20 ml/min,

equilibrated for 15 min while maintaining 30 cm H20 pressure. Inflation/deflation pres-

sure-volume curves were then collected. The compliance measurements were taken

from the deflation limb of the curve between 30% and 70% of total lung capacity.

e) Bronchoalveolar Lavage (BAL): The trachea was cannulated and the airways

were lavaged with 10 ml cold normal saline (5°c). This procedure was repeated 6 times

for a total lavage volume of 60 ml. The BAL samples were pooled. Total BAL protein

was assayed using the Lowry method with modification for the presence of lipid from the

60 ml pooled lavage (39). BAL hemoglobin levels were measured using a modified

benzidine assay.

f) Cell Counts: Total white cell counts were performed on BAL, pulmonary and

arterial blood and pleural fluid using a Neubauer hemocytometer with EDTA stabiliza-

tion. Differential cell counts were performed with microscopic survey using Wright-

Geimsa stain.



Data Analysis: Data were analyzed using ANOVA with Dunnett's correction for

the individual comparisons in the biochemistry studies. The cardiovascular data were

analyzed using a 2-way ANOVA. Individual comparisons were analyzed using Stu-

dent's t-test with Bonferroni correction. Significance was considered at p<0.05.

Procedure (Decompression Studies): The conscious rats were placed in a rodent re-

straint apparatus and acclimated to the chamber environment before collection of base-

line data. The chamber was then compressed to 616 kPa at 34 kPa/min for a bottom

time of 120 min, then decompressed to sea level at 38 kPa/min. Hemodynamic moni-

toring continued throughout the compression/decompression procedure and for 120 min

after. The chamber environment was maintained at room temperature (+_4°C) during

both compression and decompression with a constant fresh air flow.

Pulmonary measurements (Groups 2-4, n = 60)

Group 2 rats (440+59 g) consisted of non-decompressed controls, group 3 rats

(421_+57 g) were decompressed and measurements taken immediately after the de-

compression (0 min post decompression), and group 4 rats (406+27 g) were decom-

pressed and measurements taken 60 min post decompression. At 0 to 60 min post de-

compression, the rats were anesthetized (pentobarbital sodium, 50 i.p.) and an arterial

blood sample was collected anaerobically from the abdominal aorta for blood gas,

plasma protein, and white blood cell analysis. Pulmonary artery blood samples were

collected by direct puncture of the pulmonary artery following thoracotomy. The animals

were then exsanguinated, pleural fluid collected, and the lungs removed for measure-

ment of compliance, bronchoalveolar lavage (BAL) collection, and extravascular lung



water (pulmonary edema ) measurement. Not all measurements were obtainable from

each rat. The number of rats/measurement are listed in the tables.

Procedure (Tail-Suspension (TS) VAE Studies): Group 1, (n=8) designated VAE, was

exposed to 3 hrs of venous air infusion. We elected to use VAE given as a continuous

infusion to simulate the prolonged bubbling that is reported with hypobaric decompres-

sion exposures used to simulate an astronaut (EVA). In these cases, VAE are detected

with Doppler ultrasound probes for periods lasting several hours during the period of

decompression. Injecting venous gas very slowly in the rat simulated that particular

feature of decompression effects. Although this technique is well established for a

number of species (38), little data is available for the rat. After hemodynamic parame-

ters stabilized, rats received the venous air infusions into the central venous catheter at

a rate of 0.015 ml.kgl.min 1 for 180 min. Cardiovascular data were recorded at 15, 30,

45, 60, 120 and 180 minutes during venous air infusion and at 15, 30, 45 and 120 min-

utes and 24 hrs post infusion.

Group 2 (n=8) designated TS-VAE, experienced cardiovascular deconditioning

by tail- suspension (TS) with a 30 ° head-down tilt. The tail suspension model has pre-

viously been described in detail (44) and is widely used by investigators to simulate the

fluid shifts commonly observed upon exposure to microgravity. Briefly, rats were fitted

with a flexible foam-tape cast applied to the proximal half of the tail. The cast was at-

tached to a swivel and the rats were suspended in a 30 ° head-down tilt. This apparatus

allowed the rats to rotate in a 360 ° arc using their forelimbs and permitted free access to

food and water in a light/dark cycled environment. Following 96 hrs tail-suspension and

while maintained in the suspended position, the animals were infused with venous air

for 3 hrs as described above.

Pulmonary Measurements (Groups 3-6)

Group 3 consisted of normoactive controls, Group 4, tail-suspension only, Group

5, VAE only and Group 6, tail-suspension-VAE. The rats in groups 5 and 6 received
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venous air infusions, as described above. Immediately post infusion, the animals were

anesthetized with pentobarbital sodium (50 mg IP). An arterial blood sample was col-

lected anaerobically for blood gas and plasma protein analysis. The animals were

euthanized by exsanguination and the lungs were removed for the following measure-

ments.



RESULTS

I. Decompression Studies

10

The decompression profile used in this study was selected to produce saturation

conditions with moderate bubbling and symptoms. Venous bubbles were visually ob-

served in 90% of the rats examined immediately following decompression (Group 3),

while only 3% (2/60) demonstrated gross symptoms of DCI (hindlimb paralysis, severe

respiratory complications, etc.). Doppler bubble detection in the instrumented rats

(Group 4) was less conclusive, demonstrating bubbles in 37% (7/19) in rats in which the

probe functioned properly. The insensitivity of the Doppler data may be attributable to

the placement of the probe on the right ventricular wall versus the more common pre-

cordial site where effective sampling of all venous blood is more assured. Quantitation

of the bubbles in terms of size or count was not undertaken in these studies.

a. Blood Gas Measurements: (Table 1) Arterial PO2 values were decreased in

Group 3 rats (nonsignificant) and elevated in Group 4 (significant). PaCO2 values were

significantly increased (44.9 + 2.4 mmHg to 51_+ 1.8 mmHg) in Group 3 (p < 0.05) and

were unchanged in Group 4. Increased respiratory frequency with decreased tidal vol-

umes were observed visually in 68% of the rats 0 min. post decompression. These rats

had PaCO2 values significantly higher (53 _+ 8 mmHg) than those without respiratory

symptoms (47 + 1lmmHg) or from the control Group (44.9 + 2.4 mmHg).

b. Pulmonary Measurements: (Table 2) BAL hemoglobin values were increased

in Groups 3 and 4 by 7.5 and (p<0.05) 17 fold, respectively.

creased in Groups 3 and 4 (36% and 77%; Group 4, p < 0.05).

protein ratio was also significantly increased in Group 4 compared to controls.

BAL total protein was in-

The BAL protein/plasma

Plasma
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protein levels were unchanged. Pleural protein and Hb values were unchanged. Lung

compliance was decreased by 10% in Group 3 and 16% in Group 4 (non significant).

c. Cell Counts: Pulmonary blood white cell counts (WBC) were increased in

Group 4 (Figure 1, Bottom). The percentage of arterial and pulmonary WBC that were

neutrophils was slightly elevated (nonsignificant) in both groups (Figure 1, Top). Pleural

fluid WBC was decreased in Group 3, a dilutional effect, while the percentage of neu-

trophils was increased in Group 4 (p < 0.05). BAL WBC increased significantly in both

Groups 3 and 4 (121% and 212%, respectively), as did the percentage of neutrophils in

Group 4 (Figure 1, Top).

d. Pulmonary Edema Measurement: Extravascular lung water (wet/dry

weight ratio) was significantly elevated in Group 4, 60 min. post decompression (Table

2). Cut lung surfaces often revealed perivascular cuffs of edema fluid, especially

around larger vessels. Excess airway fluid was not observed.

e. Cardiovascular Measurements: (Figure 2) Mean arterial blood pressure was

significantly elevated at the end of the compression period and unchanged post de-

compression. Heart rate was unchanged throughout the compression/decompression

protocol. Cardiac output (Figure 3) was unchanged throughout the compression pe-

riod, decreased upon return to sea level pressure (21%, p < 0.05) and remained de-

creased for 60 min. post decompression (21%, p < 0.05). Comparable changes oc-

curred with stroke volume, with a greater degree of recovery, however (18% from

baseline) 120 min. post decompression. Systemic vascular resistance (Figure 2) was

unchanged during the period of compression, increased significantly 0 min. and 60

min. post decompression (65% and 70%) and remained elevated for 120 min. (34%).
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Left ventricular wall thickening fraction (TF) was unchanged for all groups, while right

ventricular TF (Figure 3) was decreased significantly 0 min. and 60 min. post decom-

pression.

I1. Tail-Suspension Studies

Cardiovascular Measurements: In the TS-VAE group, SVR increased signifi-

cantly by 28% from the onset of tail-suspension and remained elevated throughout the

venous air infusion (Figure 4). In the VAE group, SVR increased significantly by 23%

above baseline within 60 min of venous air infusion and remained elevated for 5 hrs.

SVR in the VAE group returned to baseline within 6 hrs. CVP remained unchanged in

both groups.

Cardiac output in the VAE group decreased by 26% by the end of the 180 min

venous air infusion (Figure 4). This was significantly greater than the TS-VAE group

whose CO decreased by 9%. In the TS-VAE group however, tail suspension alone

caused a 11% decrease (non-significant) in CO prior to the venous air infusion. De-

creases in CO from baseline were significant at 1, 2 and 3 hours of venous air infusion

for both TS-VAE and VAE groups, versus control. CO returned to baseline within 3 hrs.

after venous air infusion. Arterial blood pressure was not significantly altered by either

the tail-suspension or VAE. WT remained unchanged in response to tail-suspension or

venous air infusion..

TS-VAE and VAE rats showed a similar response in heart rate to venous air infu-

sion. HR decreased significantly by the first hour of air infusion and remained de-

creased until the end of the infusion. The differences between the two groups were not

significant. In both groups, HR returned to baseline within 6 hrs. (Figure 5).
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Pulmonary Measurements: In the VAE group, lung wet to dry ratio was in-

creased significantly as compared to the three other groups. TS-VAE rats also showed

a significant increase in lung wet to dry ratio as compared to the control group. Tail

suspension alone did not cause a significant increase in extravascular lung water. Arte-

rial blood gas values, pH, PaCO2 and PaO2 were not different from control value in any

experimental group, although the decrease in PaO2 and the increase in PaCO2 seen in

the VAE and TS-VAE groups were consistent with the pathologic pulmonary changes

reported with DCI. Pulmonary compliance was unchanged in all experimental groups

(Table 3).

Total arterial white blood cell counts (WBC) were unchanged in all experimental

groups (Table 4, top). Pulmonary arterial blood white cell counts were significantly in-

creased however, in the VAE group versus controls, but neither the TS or the TS-VAE

groups showed significant differences from the control group. Pleural fluid white blood

cell count was decreased in the VAE group versus the controls. This appeared to be a

dilutional effect due to an increase in pleural fluid volume. BAL WBC counts were un-

changed. Arterial blood neutrophil counts in both the TS-VAE and the VAE groups were

significantly increased over control. Pulmonary and systemic arterial neutrophil counts

were significantly increased in both the VAE and the TS-VAE groups versus the control

group (Table 4). Pleural fluid neutrophil counts were increased significantly in all ex-

perimental groups versus the control.

Pleural fluid protein concentration was increased in the VAE group versus the

controls, but there was no significant change in either the TS or the TS-VAE groups.



Plasma protein levels were unchanged (Table 4, bottom).

in both TS-VAE and in VAE rats (Table 4).

14

BAL protein was unchanged

DISCUSSION

I. Decompression Studies

The data reported in this study further demonstrate the utility of the rat model in

the evaluation of cardiovascular and pulmonary responses to moderate decompression

stress. Changes in cardiovascular parameters are consistent with those reported in

other species such as the dog or the pig (7,17,58). MAP values are commonly in-

creased (often nonsignificant)with moderate decompression exposures in the larger

species. We observed an increase in MAP during compression only with no changes

post decompression. Decreases in HR have been reported during compression, while

increases lasting up to several hours post decompression or no change at all have also

been reported (7,58). In our study, the increase in HR observed 60 min. post decom-

pression was not significant. Changes in HR may be attributable to sympathetic stimu-

lation or changes in PaCO2while concomitant increases in system vascular resistance

may also be a result of direct sympathetic stimulation or a result of cathecholamine re-

lease (13,19).

Previous studies have reported a decrease in CO following an increase in pul-

monary vascular resistance (46). Others have suggested that decompression-induced

decreases in CO may be due to changes in venous return, increased load on the right

ventricle as a result of the obstructed pulmonary circulation or to increased afterload on

the left ventricle due to the elevated system vascular resistance (17,46,58).
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Our data suggest that a decrease in venous return may be responsible for the

decrease in CO recorded after decompression. Evidence supporting this concept in-

cludes:

1) The decrease in right thickening fraction (TF) related to either a decrease in an

intrinsic cardiac inotropism or a decrease in venous return. Both mechanisms

have been previously described. Right ventricular failure may occur because of

myocardial ischemia resulting from a decrease in coronary blood flow due to a

decrease in coronary perfusion pressure, (e.g., decrease in aortic diastolic pres-

sure associated with elevated right ventricular end-diastolic pressures) (36) or a

failure of the right ventricle to compensate for the increase in pulmonary vascular

resistance due to the presence of bubbles following decompression. However, it

is unlikely that a decompression-induced right ventricular failure was involved in

the decrease in TF. Thus, the TF decreased only in the right ventricle after de-

compression. Furthermore, the changes cited above are reported with more se-

vere cases of DCS or with air embolization where right ventricular pressures are

greatly increased.

2) In the absence of cardiac failure, a decrease in venous return is associated with

a decrease in preload of the left ventricle.

3) It is established that in the absence of preload changes, an increase in afterload

(e.g., systemic vasoconstriction) is associated with a compensatory increase in

cardiac contractility to maintain cardiac output. This is reflected as an increase in

left TF (Starling's Law).
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In our experimental conditions, left TF remained unchanged despite an increase

in systemic vascular resistance and decrease in CO. Therefore the lack of expected left

TF increase also represents an argument in favor of a decrease in venous return occur-

ring after decompression. Any additional effects of venous bubbles or mediator-induced

changes in venous resistance and/or capitance may also have contributed to a de-

crease in venous return.

Pulmonary effects of decompression-induced or exogenously introduced venous

bubbles include their interactions with cellular components of the blood. Such interac-

tions include platelet and neutrophil activation and the associated release of bioactive

mediators including; serotonin, histamine, kinins, prostaglandins, lymphokienes, throm-

boxanes and leukotrienes (16,24,50,59). These agents can alter microvascular mem-

brane and epithelial permeability and vascular tone, leading to pulmonary edema for-

mation (16). This was evident in the present study by an increase in EVLW as well as

increases in WBC's in BAL and pulmonary blood as well as neutrophil percentages in

pleural and BAL fluid. Ohkuda et al. (47) and others have demonstrated pulmonary

edema with venous air infusion suggesting a reversible change in permeability of the

microvascular membrane. Catron et al. (18) and Peterson et al. (49) reported pulmo-

nary edema after DCS or venous air infusion without an increase in left ventricular end-

diastolic pressures. These observations are consistent with the reported data and sug-

gest that even with moderate decompression, some change in lung fluid balance is pos-

sible. Similar changes have been reported with widely variable pressure exposures in

animals and man (7,16,18,32,33). The significant increases in lysophosphatidylcholine

are consistent with other studies suggesting its role in altering lung fluid balance, espe-
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cially regarding changes in BAL (14). Venous air embolism in dogs has been shown to

cause pulmonary endothelial disruption, platelet and leukocyte adherence to bubble

surfaces and increases in leukocyte counts and degranulation (1,43). Similar findings

have been reported in mesenteric vessels after decompression in rats (50) and in pul-

monary vessels in mice (5)° The results of this study demonstrate cardiovascular func-

tion and pulmonary changes with moderate DCS in the rat. They further demonstrate

that the effects of circulating bubbles can be measured physiologically even in a small

animal model at moderate decompression exposures and parallel many of the reported

changes that are seen with larger animals and man.

I1. Tail-Suspension Studies

Previous reports describing cardiopulmonary responses to significant decom-

pression illness included hypotension, pulmonary hypertension, pulmonary edema, de-

creased lung compliance, hemoconcentration and hypoxemia (7,15,18,21,30). In simi-

lar conditions, Bove et al. observed increased systemic vascular resistance, tachycar-

dia, increased central venous pressure and decreased cardiac output (7). Cardiovas-

cular symptom expression and severity depend primarily on the extent of the decom-

pression injury and hence the degree of venous bubble formation. In our experimental

design, the use of a venous air dose standardized by weight, insured that the venous

gas insult was uniform throughout the study population. Our findings demonstrate an

attenuation in the response to both pulmonary edema formation and the decrease in

cardiac output with simulated weightlessness and venous embolization (TS-VAE group).

Several mechanisms may be involved in the response of the deconditioned car-

diopulmonary system to venous air embolizationo The changes in cardiac output may

be due to either fluid shifts or to a direct effect on myocardial function. The effects on

the lungs include vascular distension, changes in volume, changes in ventilation to
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perfusion matching and potential changes in diffusing capacity (55). Additional factors

may include mediator-induced changes in vascular tone and endothelial permeability

(54), lymphatic recruitment (57), as well as hypoxic pulmonary vasoconstriction.

In the present study, there was a slight but non-significant decrease in cardiac

output with tail suspension, a finding that in magnitude is consistent with other studies

(9). This change could be expected to prolong recovery from a venous gas insult, pos-

sibly by decreasing pulmonary blood flow and thereby reducing the rate of gas embolus

washout. However, venous air infusion produced an acute decrease in cardiac output

in all animals, whereas in the TS-VAE group, the decrease in cardiac output was signifi-

cantly less than the decrease experienced by the VAE alone group. It might therefore

be inferred that even though both groups demonstrated approximately the same total

decrease in cardiac output, the initial decrease experienced by the TS-VAE group oc-

curred prior to the VAE and therefore may have allowed for compensatory changes to

Occur.

The result of a higher cardiac output in the TS-VAE group (after first hour of air

infusion) relative to the VAE group may have allowed an increase in pulmonary perfu-

sion enabling deeper penetration of the emboli into the pulmonary vascular tree. The

emboli would thus block a smaller segment of the pulmonary vasculature and therefore

obstruct less of the pulmonary blood flow. This could result in a lower pulmonary artery

pressure and less edema formation. A higher cardiac output might also increase the

diffusion of gas from the emboli into the surrounding blood by exposing the emboli to a

greater volume of blood per unit time, resulting in a more rapid rate of resolution (42).

This process might also be influenced by accumulation of protein and coagulation prod-

ucts at the blood-bubble interface (50). Measurement of left ventricular myocardial wall

thickening fraction, an indicator of myocardial contractility, demonstrated no direct ef-

fects of either tail suspension or venous air emboli on the myocardium.

We observed that the systemic vascular resistance was increased initially in the

TS-VAE group, in response to tail-suspension, with no further increase during venous
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air embolization. An analogous response in the pulmonary circulation, especially when

venous bubbles obstruct pulmonary vessels, could result in a smaller increase in pul-

monary artery pressure with venous air embolization than would be expected, leading to

a decrease in pulmonary edema formation. Direct evidence for such a mechanism is

unavailable.

The decrease (nonsignificant) in HR with the VAE in both groups was consistent

with other reports of VAE or decompression in dogs (12,15). Possible mechanisms may

include a bundle branch block if the insult was sufficient to causes myocardial ischemia

(22) or a reflex-mediated response where the right heart chamber volumes are over-

whelmed due to the venous gas challenges (10). Both of these mechanisms are usu-

ally reported with large VAE doses, however, that are sufficient to cause systemic hy-

potension.

Simulated microgravity has been shown to improve ventilation to perfusion ratio

via central fluid shifts (26). This might improve tolerance to pulmonary air emboli by

both maximally recruiting the pulmonary vasculature and by optimizing the lung's ability

to exchange gas, thereby eliminating the gas via the alveoli. This too could result in a

decrease in pulmonary edema formation, as seen in our studies.

Indirect effects of venous air bubbles include neutrophil activation and mediator

release (16,54) resulting in modification of vascular permeability and tone with conse-

quent pulmonary edema formation. Evidence of this process was observed in all ani-

mals exposed to venous air infusion. Arterial, pleural and pulmonary arterial neutrophil

percentages were increased in both the TS-VAE and the VAE groups, but only the VAE

group showed significant changes in systemic arterial and pleural total white blood cell

count, suggesting a possible mechanism for increased mediator activation in the VAE

group as compared to the TS-VAE group. The decreased BAL and pleural protein val-

ues further suggest that the permeability of the microvascular and alveolar membranes

were less affected in the tail-suspension-VAE rats than the VAE alone.
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Conclusions drawn from the present study are subject to certain limitations. It

has been shown by other investigators that venous gas emboli will be distributed ac-

cording to the gravity vector. However, Chang et al. reported that the size of the bub-

ble, the speed of the blood flow and the size of the vessels do play a role. The authors

found that under most circumstances, the emboli followed the higher branch of a bifur-

cation (20). While the current model mimics the greater homogeneity in blood flow seen

in microgravity, one would still expect a preponderance of emboli in the "upper" lobes.

Additionally, the bubbles produced by venous air embolization are larger than DCS-

induced bubbles, consequently some differences in pulmonary arterial occlusion pat-

terns and possibly in surface-area dependent processes such as cellular activation and

lung fluid balance might be expected. Although the results of the present study reflect

some cardiopulmonary changes, clinical symptoms of DCS involving limb pain are usu-

ally attributed to extravascular gas.

Several theories have been reported to explain the observed low incidence of

hypobaric decompression illness during EVA. A decrease in the formation of micronu-

clei due to reduced stress on the muscles, tendons and ligaments of the joints as a con-

sequence of reduced activity (exposure) in the microgravity environment has been de-

scribed (52). Additional reasons may involve actual reporting discrepancies related to

operational factors such as crew motivation, redirected attention, masking of subtle

pain, misinterpreting actual symptoms or actual reluctance to report DCS (4). The re-

sults of the present study do suggest however, that more than one process may be re-

sponsible for the decreased incidence of DCS (at least in terms of cardiopulmonary ef-

fects), including an overall increase in tolerance to the combined effects of simulated

microgravity and decompression.
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NOTE: Much of this report was adapted directly from the published articles authored by

Principal Investigator, and include verbatim passages. These references are:

1. Butler, B.D., Robinson, R., Little, T., Chelly, J.E., and Doursout, M-F.: Cardiopul-

monary changes with moderate decompression in rats. Undersea Hyperbaric

Med. 23:83-89, 1996.

2. Robinson, R.R., Doursout, M-F., Chelly, J.E., Powell, M.R., Little, T.M., and Butler,

B.D.: Cardiovascular deconditioning and venous air embolism in simulated micro-

gravity in the rat. Aviat., Space Environ. Med. 67:835-840, 1996.
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Table 1: Lung Function and Blood Gas Data

Compliance (ml/cmH20)

TLC (ml)

PaO2 (mmHg)

PaCO2 (mmHg)

PH

CONTROL

1.10_+ 0.02 (4)

22.1 +_0.04 (5)

91.8 +_3.53 (20)

44.9 + 2.35 (23)

7.36 +0.016 (23)

POST DECOMPRESSION

(0 min)

1.00 +_0.o5 (5)

21.6 + 1.14 (6)

81.2 _+4.34 (25)

51.0"+ 1.77 (26)

7.32 +0.012 (26)

(60 rain)

0.92 +_0.06 (9)

20.8 + 0.56 (9)

101.2" _4_-2.30 (35)

42.6 +__1.31(35)

7.37 _+0.012 (35)

Data are Mean SE. Numbers in brackets are n.

*p < 0.05 vs. controls.

TLC = Total lung capacity (see Methods).
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Table 2: BAL Hb, BAL / Plasma Protein, EVLW Ratio, Phospholipids

BAL Hb (mill00 ml)

Plasma Protein (g/100 ml)

BAL Protein (g/100 ml) x 10 .3

BAL Protein/Plasma Protein

EVLW

Phosphotidylcholine (mg/gm lung)

Tissue

BAL

Lysophosphatidylcholine (mg/gm lung)

Tissue

BAL

CONTROL

0.02 _ 0.014 11)

4.83 _+0.20 (13)

12.87 _+1.20 (15)

2.67 +_0.26 (13)

4.18 + 0.05 (18)

3094 _+551 (7)

750_+ 101 (11)

364 _+36 (7)

2.0 + 0.4 (10)

POST DECOMPRESSION

(0 min) (60 min)

0.167 _+0.097 (11)

5.03 + 0.23 (14)

17.45 _+2.60 (15)

3.49 + 0.53 (14)

4.27 _+0.08 (22)

0.375*+0.077 (12)

5.22 + 0.11 (14)

22.81"+_2.22 (16)

4A0"-+0.58 (14)

4.53*_+0.13 (24)

4218 + 605 (12)

668 -+85 (10)

4478 + 747 (12)

745 -+ 104 (11 )

408 -+36 (12)

4.2* -+0.8 (10)

356 +_18 (11)

7.4*_+ 1.3 (9)

Data are mean + SE. Numbers in brackets are n.

EVLW = extravasular lung water ratio.

* p < 0.05 vs. controls.

BAL = bronchoalveolar lavage,
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TABLE 3. Lung edema, compliance and blood gas data

CONTROL T8 MAE TS-VAE

EVLW 4.18+0.21 3.80___0.41 6.02+0.68"§ 4.78+0.73"

Compliance 2.20+0.22 2.10_+0.21 2.00_+0.08 1.90+0.17

PaO2(mmHg) 89.90_+5.18 91.00_+8.83 77.20_+7.78 75.70_+16.86

PaCO2(mmHg) 44.90_+2.35 50.30+3.75 47.20_+2.33 47.50_+5.80

pH 7.35_+0.02 7.25_+0.02 7.24_+0.04 7.27_+0.03

Dataare representedas mean_+S.D.

*p<0,05comparedwithcontrol

p<0.05 comparedwithTS-VAE

EVLW= extravascularlungwater ratio
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TABLE 4: Cell counts and protein data

Total WBC

(cells/mm 3)

Arterial

Pulmonary

BAL

Pleural

CONTROL TS VAE

7920±386

7970±427

674±53

54462±5050

7831±838

8903±1074

371±61

60133±9019

7975±1448

.

13139±1242

638±141

20539±3005

TS-VAE

6066±1051

10457±1840

880±185

46169±10354

Neutrophils

(percentage of total WBC)

Arterial 4.90±1.34 29.60±6.34 70.10±2.99" 68.10±6.28"

Pulmonary 1.27±0.96 24.10±5.17 55.10±4.38" 52.95±31"

BAL 0.68±0.19 2.60±1.66 3.20±1.52 2.30±0.75

Pleural 1.63±0.24 4.60±0.54" 11.40±0.32" 10.60±1.09"

Protein

(mg/dl)

Plasma 48.30±2.09 51.92±1.66 50.45±2.33 49.15±2.85

BAL 7.08±0.60 55.00±0.50 20.06±4.92 14.91±8.72

Pleural 18.64±1.14 16.25±1.27 27.68±0.97" 13.77±2.81

WBC = white blood cells

Data are represented as mean ± S.D.

• p<0.05 compared with control
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FIGURE LEGENDS

FIGURE 1:

Top; White blood cell count; percentage of neutrophils in three groups. Signifi-

cant increase in percentages were observed in the bronchoalveolar lavage (BAL)

and pleural fluids, 60 min. post decompression.

Bottom; White blood cell counts. Significant increases were observed in the

bronchoalveolar lavage (BAL) at 0 min. and 60 min. post decompression and in

pulmonary blood 60 min post decompression. Pleural WBC counts were de-

creased 0 min, returning to control values 60 min post decompression.

FIGURE 2:

Mean arterial blood pressure (MAP) and systemic vascular resistance (SVR)

changes with decompression. MAP increased at depth while SVR increased

immediately upon surface and 60 min. post decompression.

FIGURE 3:

Cardiac output (CO) decreased at surface and 60 min. post decompression while

right ventricular thickening fraction (TFRv) showed parallel responses.

FIGURE 4:

Systemic vascular resistance (SVR) and cardiac output (CO) are plotted as per-

cent change from baseline over time for the TS-VAE and VAE groups. Venous

air infusion started at Time = 0 and continued until Time = 3 hrs. TS-VAE SVR

values were significantly elevated from the onset of tail-suspension and through-

out the air infusion. SVR was also elevated in the VAE group during the air infu-

sion and for 2 hrs. recovery. Cardiac output was decreased significantly from

baseline during the air infusion in both groups, and significantly different from

each other at 180 min. infusion.
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FIGURE 5:

Heart rate (HR) and mean arterial pressure (MAP) are plotted as a function of

time. Venous air infusion started at Time = 0 and continued until Time = 3 hrs.

MAP values were not significantly changed. HR decreased significantly in both

groups during the air infusion.
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